MEX-5 enrichment in the C. elegans early embryo mediated by differential diffusion.

نویسندگان

  • Brian R Daniels
  • Terrence M Dobrowsky
  • Edward M Perkins
  • Sean X Sun
  • Denis Wirtz
چکیده

Specification of germline and somatic cell lineages in C. elegans originates in the polarized single-cell zygote. Several cell-fate determinants are partitioned unequally along the anterior-posterior axis of the zygote, ensuring the daughter cells a unique inheritance upon asymmetric cell division. Recent studies have revealed that partitioning of the germline determinant PIE-1 and the somatic determinant MEX-5 involve protein redistribution accompanied by spatiotemporal changes in protein diffusion rates. Here, we characterize the dynamics of MEX-5 in the zygote and propose a novel reaction/diffusion model to explain both its anterior enrichment and its remarkable intracellular dynamics without requiring asymmetrically distributed binding sites. We propose that asymmetric cortically localized PAR proteins mediate the anterior enrichment of MEX-5 by reversibly changing its diffusion rate at spatially distinct points in the embryo, thus generating a stable concentration gradient along the anterior-posterior axis of the cell. This work extends the scope of reaction/diffusion models to include not only germline morphogens, but also somatic determinants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polarity-Dependent Asymmetric Distribution and MEX-5/6–Mediated Translational Activation of the Era-1 mRNA in C. elegans Embryos

The early C. elegans embryo is an attractive model system to investigate fundamental developmental processes. With the exception of mex-3 mRNA, maternally contributed mRNAs are thought to be distributed uniformly in the one-cell embryo. Here, we report and characterize the striking distribution of the mRNA encoding the novel protein ERA-1. We found that era-1 mRNA is enriched in the anterior of...

متن کامل

PAR proteins direct asymmetry of the cell cycle regulators Polo-like kinase and Cdc25

Cell cycle lengths vary widely among different cells within an animal, yet mechanisms of cell cycle length regulation are poorly understood. In the Caenorhabditis elegans embryo, the first cell division produces two cells with different cell cycle lengths, which are dependent on the conserved partitioning-defective (PAR) polarity proteins. We show that two key cell cycle regulators, the Polo-li...

متن کامل

Regulation of the MEX-5 Gradient by a Spatially Segregated Kinase/Phosphatase Cycle

Protein concentration gradients encode spatial information across cells and tissues and often depend on spatially localized protein synthesis. Here, we report that a different mechanism underlies the MEX-5 gradient. MEX-5 is an RNA-binding protein that becomes distributed in a cytoplasmic gradient along the anterior-to-posterior axis of the one-cell C. elegans embryo. We demonstrate that the ME...

متن کامل

MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos.

An asymmetrical network of cortically localized PAR proteins forms shortly after fertilization of the C. elegans egg. This network is required for subsequent asymmetries in the expression patterns of several proteins that are encoded by nonlocalized, maternally expressed mRNAs. We provide evidence that two nearly identical genes, mex-5 and mex-6, link PAR asymmetry to those subsequent protein a...

متن کامل

Reduced dosage of pos-1 suppresses Mex mutants and reveals complex interactions among CCCH zinc-finger proteins during Caenorhabditis elegans embryogenesis.

Cell fate specification in the early C. elegans embryo requires the activity of a family of proteins with CCCH zinc-finger motifs. Two members of the family, MEX-5 and MEX-6, are enriched in the anterior of the early embryo where they inhibit the accumulation of posterior proteins. Embryos from mex-5 single-mutant mothers are inviable due to the misexpression of SKN-1, a transcription factor th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 137 15  شماره 

صفحات  -

تاریخ انتشار 2010